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Abstract
Lattice gas based models are usually discussed in terms of spin averages
instead of distribution functions. As they are very useful in the study of
adsorption phenomena, a density functional (DF) formalism, which would
unify the discussion of both the liquid and the adsorbed phases, seems a most
useful alternative. Here we present a first step in that direction by deriving
the two essential components needed for any DF theory. The first one is a
fully developed Ornstein–Zernike (OZ) formalism which we arrive at in two
steps. The first one is the definition (through functional differentiation of the
grand canonical partition function) of the distribution and correlation functions
hierarchies. In the second step we find that the rigid neighbourhood of a
lattice gas forces us, if an authentic DF theory is our goal and even in the
grand canonical ensemble, to define N-modified distribution and correlation
functions much in the same way as we have recently done when discussing DF
theory in the canonical ensemble. These N-modified hierarchies of correlation
functions are, indeed, linked by a full set of n-body OZ equations. The second
ingredient for any DF theory is an expression for the entropy (in terms of the
already discussed correlation functions) which we obtain by following previous
work by us in fluids. We also generalize the compressibility contribution
to the entropy by using the already derived lattice gas formalism in a way
immediately translatable to liquids. In summary, we show how a deep and
intimate relationship between lattice gases and fluids can be obtained if both
are discussed in a DF framework with functional differentiation techniques
and, therefore, we think that the beginnings of a DF theory of lattice gases are
established.
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1. Introduction

Finite temperature density functional (DF) theory is the offspring of the Hohenberg, Kohn,
Sham and Mermin (HKSM) theorem [1] and, when applied to fluid systems, follows a
deceptively simple template: a free energy functional is proposed, a variational calculation
(usually with one-and two-body distribution functions as independent functions) is performed
and the output is both a microscopic description, given by the distribution functions solving
the variational equations, and some statistical mechanical quantities obtained as averages
over these distribution functions. A closer examination shows two essential ingredients: an
Ornstein–Zernike (OZ) formalism (a sine qua non condition for the validity of the HKSM
theorem) and some proposal for the entropy functional. Let us also mention that the original
HKSM theorem was derived in the grand canonical ensemble (GCE) and, very recently, we
extended it to the canonical ensemble (CE) [2] by dropping off the asymptotic behaviour of
the distribution functions and, thus, deriving new, N-modified hierarchies of distribution and
correlation functions. Although this issue is ample proof of the quantity and diversity of DF
applications, we can, nevertheless, mention some general reviews [3], as well as reviews on
uniform and non-uniform systems [4], confined fluids [5], melting and freezing [6], etc. On
the other hand, present theories of lattice gas systems fall short (see below) of meeting the
requirements for a full DF theory. This paper attempts to fill this gap by deriving the two
essential prerequisites for such a theory, i.e. an OZ formalism and a proposal for the entropy
functional in a form suitable for DF calculations.

The term ‘lattice gas’ was coined by Yang and Lee in their classic work on a mathematical
mechanism that triggers phase transitions [7] and it has been applied to numerous systems
with particular emphasis on phase transitions and critical phenomena [8]. Let us mention in
that respect that, for example, three-dimensional lattice gases and three-dimensional fluids
belong to the same universality class. Roughly speaking, by lattice gas we will mean, in this
paper, a mathematical lattice where each node can be in one of several possible (and mutually
exclusive) discrete states. The physical problem that motivates us is the case of adsorption
phenomena on a lattice like, for example, those in the electrode–electrolyte interface, where a
quite natural language to use in its study is the one of lattice gases and its associated occupation
number formalism [9]. However, this is not an easy task. One of the main problems is how
to treat the different excluded volume effects when different molecules can be adsorbed on
a lattice or, equivalently, how to write the entropy. This is the main reason for the failure of
standard mean field theories in some of these systems. On the other hand, liquid state theory
is formulated considering excluded volume effects as the more important ones. In fact, to
include them is the absolutely indispensable condition in order to formulate any liquid state
theory; an outstanding example is Rosenfeld’s fundamental measure functional [4]. Some
previous approaches to lattice gases using ideas borrowed from liquid state theory are those
of [10–12]. Robledo and Farquhar [10] employed a random walk and lattice Green function
formalism to study the decay of pair correlations in the framework of an OZ equation in the
Percus–Yevick approximation. It is a very elegant work but its drawback is that it is restricted
to nearest neighbours (nn) and it has not been possible (and it does not seem very feasible,
either) to extend it to longer range interactions. This problem, in fact, has precluded its
application to systems with adsorbates of different sizes where, sometimes, the nn occupation
is forbidden. The reason is that an extension of lattice Green functions to more complex
random walks seems extremely complicated (if feasible at all), even for next nn. Dickman
et al [11] used a self-consistent Ornstein–Zernike approach (SCOZA) previously developed
by Hoye and Stell [13] and, by demanding thermodynamic consistency, arrived at a partial
differential equation that was quite successfully solved for several cases. They also considered
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spin averages. Prestipino et al [12] developed a quasi-liquid formalism, quasi because, as
in [10, 11], they work with spin averages instead of distribution functions. In summary, in
all of these approaches, full distribution and correlation functions (as defined in [14]) are not
considered and so they do not have a properly based OZ theory.

On the other hand, a full liquid state formalism applied to lattice gases is intrinsically
attractive because, on the one hand, excluded volume effects can easily be taken into account
exactly (the necessary distribution functions g are, by definition, g ≡ 0 in that range). Indeed,
if we are considering, for example, adsorption of more than one species (see section 2), this
approach seems simpler than the one which employs occupation number formalism. Also,
the more modern and developed formalism in liquids is the OZ formalism which allows the
introduction of both DF ideas as well as sophisticated free energy functionals, see e.g. [4].
As it has been very successful in dealing with the fluid phase in contact with the wall, the
possibility of having a unified (i.e. same formalism) treatment seems rather interesting. Another
convenient characteristic of this formalism is that it leads to equations that do not depend on
derivatives of the interaction potential (which do not have a clear analogy in lattice gases).
These features will be available to the study of lattice gases if a one to one correspondence
can be established between liquids and lattice gases at a very basic level, i.e. the one of
distribution functions hierarchies. We not only show in this paper that both problems are
equivalent, i.e. isomorphic if treated with the adequate formalism (functional differentiation
of thermodynamic potentials), but also show how a full OZ formalism can be obtained and,
as a consequence, laid the foundation for a DF theory of lattice gases. The problem to solve
is that an OZ theory does not immediately follow from the functional differentiation analysis
because of the rigid topology of lattice gases and that leads us to the introduction of N-modified
distribution and correlation functions. We then write down the decomposition of the entropy
in terms of correlation functions of increasing complexity by mimicking previous work by us
on liquid systems [15–17]. As in the course of the derivation we needed the generalization
to mixtures in external fields of some recently derived terms [17], we did that by using the
lattice gas language and then directly translated it to liquid state formalism showing, as a
by-product, how useful this isomorphism can be. The layout of the paper is as follows: in
section 2 we discuss the general functional formalism in the lattice gas case. In section 3 we
show how a rigid neighbourhood invalidates a straightforward OZ approach and, after that,
discuss how previous work [2] on the extension of DF theory to the CE can be used. The point
we make there is that the fixed topology constraint of a lattice gas is, in spite of holding true to
every order of the neighbourhood, a constraint of the same nature that the fixed N constraint
found for fluids in the CE. Therefore, we prove that the HKSM theorem can be formulated
by working with the N-modified distribution and correlation functions and, also, that these
N-modified functions have the correct hierarchical structure needed in DF theory. In section 4
we discuss the entropy, obtain an exact decomposition of the entropy in correlation functions
of increasing complexity and present several approximations to the entropy that can be useful
in actual calculations. Section 5 summarizes our conclusions. Lastly, we want to emphasize
that we believe the main result of this paper is how deeply intertwined lattice gases and fluids
are when both of them are analysed with the functional differentiation formalism of OZ based
theories and how this isomorphism opens the highway of DF to research in lattice gases.

2. General formalism

The physical system we consider is a crystalline lattice onto which different molecules can be
adsorbed. In general, these molecules will have different sizes and adsorption energies. Of
paramount importance are the different excluded volume effects, e.g. it can happen that when
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molecule α sits on a given site it will prohibit occupation of its nn, while if that site is occupied
by molecule β the occupation of those neighbours is allowed by any molecule different from
α. Obviously, the richness of the available phases is almost endless, but it is also obvious that,
in order to obtain them, an adequate treatment of the excluded volume effects is indispensable.
Undoubtedly they are, by far, more fundamental than using accurate values for the adsorption
energies. For an in-depth study of a real case see [9], where the adsorption of copper onto gold
(111) in the presence of sulfuric acid is analysed with an extended hard hexagon model which
includes a mean field treatment of the adsorbate nn and nnn interactions into Baxter’s hard
hexagon model [18], while the statistical weights that contribute to the entropy are analysed
by the cluster variation method [19] in the Guggenheim–McGlashan approximation [20]. The
model Hamiltonian of our general lattice gas problem is, in occupation number formalism,

H({V (1)}, {V (2)}) =
p∑

α=0

∑
i

V (1)
α (i)cα +

∑
α,λ

∑
i,j

V (2)
αλ (i, j)cαcλ (1)

where the Greek indexes label the different adsorbed molecules, α = 1, . . . , p with 0 reserved
for no adsorbed molecule,

∑
i is a sum over the sites i of the lattice �, V (1)

α , V (2)
αλ represent the

one- and two-body contributions to the energy and the occupation numbers cα take the values
cα = α; α = 0, 1, . . . , p for the p species that can be adsorbed. Notice that, although c0 does
not contribute to the energy, and the entropy can also be written without explicitly including
the empty sites, we prefer not to dwell on these points at such an early state of the formalism.
Also, the extension to more than two-body interactions is evident. It is clear that an accurate
handling of the different excluded volume effects requires elaborated relations between the
c operators, see, e.g., [9]. Here, we pursue another approach. We proceed to develop a
functional differentiation formalism borrowing from the techniques and terminology used in
fluids. As a first step, we introduce the distribution and correlation functions hierarchies and
so we have that, by definition, each one of the correlation functions hαλ(i, j) ≡ −1 for all
the neighbours where the pair {α, λ} is excluded. This is, probably, an easier approach if
a formalism can be built along these ideas. Writing �α(i) = −βV (1)

α (i)cα to indicate the
external field contribution on site i when that site is occupied by molecule α, keeping in mind
that, in lattice gases, N plays the role of V in liquids (the partial densities ρα are ρα = Nα/N)
and, with H = −βH, the canonical and grand canonical partition functions are

Q(N,N , β) = 1

N !

∑
{N}

eH �(N, z, β) =
∑
N

zN Q(N,N , β) (2)

where N is the system’s size, N = (N0, N1, . . . , Np); ∑
i Ni = N is the macro-description

of the system’s occupation, i.e. Ni is the number of molecules (spins) of type i and
∑

{N}
sums over all the micro-configurations compatible with N . In fact, the sum is over all the
possible ways of assembling the coordinates set {N } of indistinguishable spins (as is the
case for molecules in a mixture) in distinguishable lattice sites, N ! = ∏p

α=0 Nα! cancels the
overcounting and, lastly, zN = ∏p

α=0 zα where zα = exp(βµα) is the fugacity. If the available
microscopic states to site i are σα and the actual state of that site is indicated by σ(i), then
the grand canonical probability distribution function of having site i occupied by a molecule
α can be written in several equivalent forms:

n(1)
α (i) = 〈δ(σ (i) − σα)〉 = 1

�

∑
N

zN

(N − 1α)!

∑
{N}|i,α

eH = e�α(i)

�

δ�

δe�α(i)
(3)

where
∑

{N}|i,α means that the site i is frozen in the state α and (N − 1α)! (the overcount
correction) takes this fact into account. In this paper we will follow the functional
differentiation approach because of its transparency, easy physical interpretation in terms
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of response functions and direct correspondence with liquid state theory. In this formulation
the canonical distribution functions are formally the same with Q replacing �. There is one
important difference to liquid mixtures, though. As c0 ≡ 0 (and it must be so because an empty
site does not contribute to the energy), �0(i) ≡ 0 and therefore n0(i) cannot be obtained from
equation (3); it is obtained from the normalization given in equation (4). Due to this, the
entropy can be written without explicitly including the empty sites. However, we prefer not
to do that and refer to section 3, where a more comprehensive discussion of the relationship
between the restrictions imposed by the fixed topology of lattice gases and an adequate DF
treatment is given. The normalization equations for n(1)

α (i) are, obviously,

p∑
α=0

n(1)
α (i) ≡ 1 ∀i (4)

〈n(1)
α 〉 =

∑
i

n(1)
α (i) = 〈Nα〉 (5)

are completely equivalent to the corresponding ones of fluids and give a foundation for calling
them probability distribution functions. The CE version of equation (5) gives Nα . The link
with the more usual averages notation of lattice gases is∑

α n(1)
α (i)cα∑

α n(1)
α (i)

= 〈c(i)〉 (6)

∑
α

∑
i n(1)

α (i)cα∑
α

∑
i n(1)

α (i)
=

∑
α cα〈Nα〉

N
= 〈c〉. (7)

Equation (6) gives the mean occupation of site i and equation (7) the mean occupation number
over the lattice.

The two-body distribution function is

n(2)
αλ (i, j) = e�α(i)e�λ(j)

�

δ2�

δe�α(i)δe�λ(j)
(8)

and vanishes if i = j. Its associated correlation function is

t (2)
αλ (i, j) = e�α(i)e�λ(j) δ2 ln �

δe�α(i)δe�λ(j)
= n(2)

αλ (i, j) − n(1)
α (i)n(1)

λ (j) (9)

and, in the more usual notation, it is n(2)
αλ (i, j) = n(1)

α (i)n(1)
λ (j)[1 + h(2)

αλ (i, j)]. Their
normalization equations are∑

α,λ

n(2)
αλ (i, j) = 1 − δij (10)

∑
λ

n(2)
αλ (i, j) = n(1)

α (i)(1 − δij) (11)

〈n(2)
αλ 〉 =

∑
i,j

n(2)
αλ (i, j) = 〈Nα(Nλ − δαλ)〉 (12)

∑
α,λ

∑
i,j

n(2)
αλ (i, j) = N(N − 1)

2
. (13)

Equations (10) and (11) show how the distribution functions n(2)

00 (i, j); n(2)

α0 (i, j) can be
obtained and the CE version of equation (12) does not include the brackets. The averages
giving the mean occupation of the pair of sites i, j and the mean quadratic occupation number
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over the lattice are∑
α,λ n(2)

αλ (i, j)cαcλ∑
α,λ n(2)

αλ (i, j)
= 〈c(i, j)〉αλ i �= j (14)

∑
α,λ

∑
i,j n(2)

αλ (i, j)cαcλ∑
α,λ

∑
i,j n(2)

αλ (i, j)
=

∑
α,λ cαcλ〈Nα(Nλ − δαλ)〉

N(N − 1)/2
= 〈c2〉. (15)

Besides the conventional distribution and correlation functions hierarchies for q bodies,
composition set αq on the sites set {q} defined by (see, e.g., equations (3), (8) and (9))

n(q)
αq

({q}) =
∏q

k=1 e�αk (qk )

�

δq�∏q
k=1 δe�αk (qk )

(16)

t (q)
αq

({q}) =
q∏

k=1

e�αk (qk )
δq ln �∏q

k=1 δe�αq (qk )
(17)

we will also need the Lebowitz–Percus [14] full distribution and correlation functions:

n̂(q)
αq

({q}) = 1

�

δq�∏q
i=1 δ�αi (qi )

(18)

t̂ (q)
αq

({q}) = δq ln �∏q
i=1 δ�αi (qi )

. (19)

The t , t̂ functions are also called truncated correlation functions and the difference between
both hierarchies is that in the full hierarchy the different coordinates can coincide, while in the
other they cannot. In particular, while the one-body functions coincide, the two-body ones are
related by

n̂(2)
αλ (i, j) = n(2)

αλ (i, j) + n(1)
α (i)δαλδij (20)

with the relationship between t̂ and t functions being the same as between n̂ and n.
The important point about the full distribution and correlation functions hierarchies is that,
through them, a full set of n-body OZ equations can be defined. While this is true for fluids, in
the lattice gas case its rigid topology forces us to analyse them more carefully, even in the GCE.
It is also convenient to keep in mind that αq , as employed, for example, in equations (16)–
(19), is a symbol for the q-components species set appearing in the distribution functions and,
obviously, can be any q-size combination of the p available species plus the empty sites.

3. Ornstein–Zernike formalism

First of all we shall analyse the role played by the already mentioned, but not yet discussed,
rigid topology constraint. As the number of any-order neighbours is fixed on any lattice gas,
this is a constraint that makes the set of distribution functions linearly dependent in their whole
range (see equations (4), (10) and (11) for the one- and two-body functions). We will first
show that this constraint is very similar to the one found in the CE for fluids, where the fixed
N constraint makes impossible a straightforward OZ formalism. Let us recall a couple of
results [2] obtained while pursuing the OZ formalism in the CE:

(i) the fixed N constraint makes the n-body correlation functions asymptotically incorrect
(they do not have an irreducible n-body behaviour) and dropping off the asymptotic
behaviour of the distribution functions affects them, in fact, throughout their whole range
in order to restore the correct irreducible n-body behaviour and that is the definition of
the N-modified distribution and correlation functions;
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(ii) this dropping off causes the free flotation of the norm of the N-modified distribution
functions of order higher than one. Although a lattice gas differs from fluids in that the
topology constraint holds to every order of neighbourhood, not asymptotically, the above-
mentioned results are of the sort we need for lattice gases because, for example, in the
simplest case of two states ( +,−) the normalization conditions equations (4), (10) and
(11) give, for up to two-body functions,

n− = 1 − n+

n+− = n+ − n++

n−− = 1 − 2n+ + n++

(21)

showing that the two-body correlation functions ( t−− = −t+− = t++ do not have an
irreducible two-body behaviour (see equation (23))).

We will proceed in several steps. First, we prove that, for lattice gases, a straightforward
OZ formalism is not possible, even in the GCE. Then we will show how this can be solved
by following the steps described in [2]. More specifically, we will define a hierarchy of N-
modified distribution and correlation functions, prove that they are related through n-body OZ
equations, define a N-modified free energy functional and show that it satisfies the HKSM
theorem.

The whole point of DF theory is the ability to use densities as independent variables
instead of external potentials. That means the ability to invert the linear response equation
(see equations (18) and (19))

δn(1)
α (i) =

∑
λ,j

t̂ (2)
αλ (i, j)δ�λ(j). (22)

But, using equations (11) and (20) we obtain∑
η

t̂ (2)
ηα (k, i) ≡ 0 (23)

which is clearly incompatible with equation (22) being invertible. Notice that we have summed
over species and that this result holds for every pair of lattice sites k, i; it is not an asymptotic
result caused by fixed N restrictions. In other words, the rigid neighbourhood is responsible
for us giving up any hope of obtaining a straightforward OZ theory, even in the GCE. As, on
the other hand, things will be easier if we do not have to deal with averages in the normalization
equations (such as (5) and (12)) and either way we proceed (CE or GCE) we will have to step
through the same formalism, we will consider that our conventionaldistribution and correlation
functions are the canonical ones.

Now we introduce the N-modified distribution and correlation functions and show that
the same recipe lifts both the asymptotic and the topological constraints. As we will follow,
almost mutatis mutandis, the discussion given in [2], we will be a bit more sketchy than there.
The equivalent equations of [2] will be referred to by appending DF. The general idea is quite
simple. If a given site j is held fixed in state λ we can write, asymptotically, the conditional
probability of finding site i in state α as (equation (DF-20))

nαλ;∞(i|j) = n(1)
α (i) +

∂n(1)
α (i)

∂ρλ

�ρλ(j) = n(1)
α [1 + h(2)

αλ (i, j)] (24)

where �ρλ(j) describes the effects caused in the neighbourhood of i due to having site j fixed
in the state λ. Lebowitz and Percus, in their classic paper [14], have shown that, in the CE,
the pair correlation function separates into the product of two one-variable functions, i.e. that
it does not have a proper two-body behaviour. In fact, they proved that result for n-body
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functions. Equation (24) is just another way of writing that result and, by invoking exchange
symmetry arguments ({i, α} ↔ {j, λ}), the pair correlation function can be written as

h(2)
αλ =




h̃(2)
αλ (i, j) + αλ

∂ ln n(1)
α (i)

∂ρα

∂ ln n(1)
λ (j)

∂ρλ

i − j �∈ Eαλ

h̃(2)
αλ (i, j) i − j ∈ Eαλ

(25)

and, in this way, the N-modified pair correlation function h̃(2)
αλ (i, j) is defined as the pair

correlation function stripped of its asymptotic behaviour;αλ is an as yet undetermined constant
and Eαλ is the set of excluded neighbours by the pair α, λ. The truncated N-modified correlation
function associated with h̃(2) is (see equations (DF-25) and (DF-26))

t̃ (2)
αλ (i, j) = n(1)

α (i)n(1)
λ (j)h̃(2)

αλ (i, j) + n(1)
α (i)δαλδij (26)

t̃ (2)
αλ (i, j) =




t̂ (2)
αλ (i, j) − αλ

∂n(1)
α (i)

∂ρα

∂n(1)
λ (j)

∂ρλ

i − j �∈ Eαλ

t̂ (2)
αλ (i, j) i − j ∈ Eαλ.

(27)

Notice that, in this way, all the irreducible two-body effects (including the hard core exclusion)
are preserved. In other words, h̃(2)

αλ is the correlation function with a proper irreducible two-
body behaviour, not h(2)

αλ . Therefore, using that ∂ρα/∂n(1)
α (i) = 1/N , we obtain the result

(equivalent to equations (DF-27)–(DF-30))∑
i,j

t̃ (2)
αλ (i, j) = −αλ N2 (28)

αλ = − 1

N2

∑
i

n(1)
α (i)

[
δαλ +

∑
j

n(1)
λ (j)h̃(2)

αλ (i, j)

]
(29)

and it is immediate to show that the normalization equation turns out to be∑
i,j

ñ(2)
αλ (i, j) = Nα(Nλ − δαλ) − αλ N2. (30)

The fluctuation related term (αλ N2) in equation (30) leads us to think that the asymptotic
constraint has been lifted and this is confirmed by noticing that equation (30) holds true if the
obvious equality∑

i,j

n(1)
α (i)n(1)

λ (j) = Nα Nλ (31)

is fulfilled, regardless of the value of
∑

nαnλh̃αλ. Therefore, equations (30) and (31) imply a
free flotation of the normalization of nαλ for a given pair α, λ and so we get rid of the asymptotic
constraint.

Now let us turn to the topological constraint. If the sites i, j do not belong to the exclusion
set Eαλ, then∑
αλ

ñ(2)
αλ (i, j) = 1 −

∑
αλ

αλ = 1 +
1

N
+

1

N2

∑
k,m
αλ

[ñ(2)
αλ (k,m) − n(1)

α (k)n(1)
λ (m)]. (32)

This equation is not only independent of the pair i, j, it also depends on the system’s
fluctuations. As the sum over sites gives a free flotation, then the sum over species is also
floating and, thus, the topology constraint is lifted. By comparing with equation (10) we also
see that ∑

λ

t̃ (2)
αλ (i, j) = −

∑
λ

αλ (33)
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and, in this way, the constraint given by equation (23) is lifted. Now we can prove that t̃ (2)−1

exists. From equations (22) and (23) we obtain

δn(1)
α (i) =

∑
αλ

t̃ (2)
αλ (i, j)δ�λ(j) +

∑
αλ

αλ

∂n(1)
λ (j)

∂ρλ

δ�λ(j). (34)

As the partial chemical potential µλ for λ molecules is µλ = N−1(∂ F/∂ρλ)N,T and

−βδF =
∑

j

n(1)
λ (j)δ�λ(j) (35)

is the change in the free energy F due to changes in �λ, we then have

∂

∂ρλ

∑
j

n(1)
λ (j)δ�λ(j) = −β Nδµλ|�λ

(36)

for the variation in µλ due to the �λ variation. Using equation (28) and putting it all together,
we end up with the equation equivalent to (33):

δn(1)
α (i) =

∑
λ,j

t̃ (2)
αλ (i, j)δ�̃λ(j) (37)

�̃λ(j) = �λ(j) + βµλ (38)

and so the inverse of the two-body N-modified full correlation function exists and is given by

t̃ (2)−1

ηα (k, i) = δ�̃η(k)

δn(1)
α (i)

= δαηδik

n(1)
α (i)

− c̃(2)
ηα (k, i) (39)

which defines the two-body N-modified direct correlation function c̃(2)
ηα (k, i). Now it is

immediate to prove that, if t̃ (2) and t̂ (2)−1
are inverses from each other, the relationship between

h̃(2) and c̃(2) is the OZ equation:

h̃(2)
ηλ (k, j) − c̃(2)

ηλ (k, j) =
∑
α,i

ñ(1)
α (i)c̃(2)

ηα (k, i)h̃(2)
αλ (i, j). (40)

The procedure for generating higher-order OZ equations is described in many places, see,
e.g., [2] and references therein. Briefly, the idea is to write the Taylor expansions of both
n(1)

α (i) and �λ(j), insert one into the other and, by equating powers in the expansion, n-body
OZ equations are obtained that link the total and direct correlation functions in a hierarchical
way. These higher-order OZ equations are essential in order to have a physically consistent
DF theory, i.e. the distribution and correlation functions must have the correct hierarchical
structure; otherwise, they would be statistically meaningless and useless for writing the entropy.
Former OZ proposals [11, 13] relied on the SCOZA formalism,where the equality between two
different routes to the pressure is enforced and a partial differential equation for the Fourier
coefficients of the direct correlation function is solved. In summary, they directly started
with the OZ equation in Fourier space, the relationship between the fixed topology constraint
and the existence of an OZ theory was not discussed and, also, the insertion of those results
in a hierarchical formalism was not considered. They are very interesting works with good
numerical results but they were not aimed at formulating a general DF theory of lattice gases.

As the translating procedure between [2] and the lattice gas case should be abundantly
clear, we can refrain from wading through the maze of intermediate results of [2] and just quote
the very important ones together with a brief explanation. The idea is to get a HKSM-like
theorem that allows us to write a free energy functional in terms of densities and which is
minimized by the equilibrium profiles. Equation (23) shows that a straightforward approach
is unfeasible because t̂ (2)−1 does not exist. As the N-modified distribution and correlation
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functions lift that restriction, we will write, while keeping the same formal structure as in GCE
DF theory, an N-modified free energy F̃ and N-modified grand thermodynamic potential
�̃ in terms of these N-modified hierarchies. We will then show that �̃ is minimized by the
equilibrium densities, identify the first members of the N-modified direct correlation hierarchy
with functional derivatives of the excess N-modified free energy with respect to the density
profiles and, by showing that they have the right hierarchical structure, close the proof of the
HKSM-like theorem for lattice gases. In this way, a general foundation for a DF theory of
lattice gases is obtained. Specifically, we have:

(i) An N-modified free energy F̃ and N-modified grand thermodynamic potential �̃ defined
by

βF̃[{ñ(1)}] = 〈βUN + ln PN 〉 (41)

β�̃[{ñ(1)}] = βF[{ñ(1)}] −
∑
α,i

ñ(1)
α (i)�̃α(i) (42)

where PN is the canonical probability density, UN is the interaction energy contribution,
the average is a canonical one and the N-modified distribution functions are used. Let
us emphasize that the entropic term ln PN depends on all the n-body configurations and,
therefore, is responsible for the need of a full hierarchy of distribution functions. The
variational principle that determines the density profile is a consequence of the Gibbs–
Bogoliubov (GB) inequality [24] which states that, given two functionals �̃,�′

�̃ =
〈
β

(
H −

∑
α

µα

)
− ln PN

〉
=

∑
{N}

PN ({N })
{
β

(
H −

∑
α

µα

)
− ln PN ({N })

}
(43)

�′ the same functional of P ′
N ({N }) as �̃ is of PN ({N }), both P ′

N ({N }), PN ({N })
satisfying ∑

{N}
P ′

N ({N }) =
∑
{N}

PN ({N }) (44)

then, if PN is the equilibrium distribution, GB states that

β�′ � β�̃. (45)

Therefore, the variational principle that determines the density profile is

δβ�̃[{ñ(1)}]
δñ(1)

α (i)
= 0. (46)

(ii) The variational equations are obtained by the following procedure: we define ‘ideal’
and ‘excess’ contributions to the N-modified free energy. The ideal contribution solely
depends on one-particle distribution functions, it does not include either interaction
potentials or higher-order functions. It is needed for the correct start of the N-modified
direct correlation functions hierarchy. The excess term is everything else:

βF̃ (id) =
∑

i

n(1)
α (i)[ln n(1)

α (i) − 1]. (47)

Equation (46) can then be written as

δF̃
δn(1)

α (i)
= φ̃α(i) (48)

and, defining the one-body N-modified direct correlation function as

c̃(1)
α (i) = β

δF̃
δñ(1)

α (i)
= ln(ñ(1)

α (i)) − �̃α(i) (49)
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equation (39) can also be written as

c̃(2)
αλ (i, j) = δc̃(1)

α (i)

δñ(1)
λ (j)

. (50)

These equations start the N-modified direct correlation functions hierarchy and, hence,
we have completed the task of generating the N-modified hierarchies.

(iii) These N-modified hierarchies are given by (n(1)
α ≡ ñ(1)

α )

ñ(s)
α1...αs

(i1 . . . is) = 1

Q

δs Q∏s
k=1 δ�̃αk (ik)

(51)

t̃ (s)
α1...αs

(i1 . . . is) = δs ln Q∏s
k=1 δ�̃αk (ik)

= δt̃ (s−1)
α1...αs−1

(i1 . . . is−1)

δ�̃αs (is)
(52)

c̃(s)
α1...αs

(i1 . . . is) = β
δsF̃∏s

k=1 δñ(1)
αk (ik)

= δc̃(s−1)
α1...αs−1

(i1 . . . is−1)

δñ(1)
αs (is)

. (53)

Therefore, the moral of this section is that the lattice gas problem can be translated to liquid
theory language with an unequivocal correspondence between both systems at a very formal
and basic level. In this way, the OZ based theory of liquids can be immediately translated to
lattice gases. Also, let us mention that the chain rule allows us to write (using equation (39)),
for any quantity � ,

δ�

δñα(i)
=

∑
λ,j

δ�

δ�̃λ(j)

δ�̃λ(j)

δñα(i)
= 1

ñα(i)

δ�

δ�̃α(i)
−

∑
λ,j

c̃(2)
αλ (i, j)

δ�

δ�̃λ(j)
(54)

an equation that might be handy in formulating variational principles.

4. The entropy

4.1. The exact expression

In this section we will work with the N-modified distribution and correlation functions
introduced in section 2 but, for the sake of readability, we will omit the tilde over them.
Also, we will rely on the equivalence between CE and GCE (when the system is not very near
to critical points) in order to work in the GCE and, in this way, avoid the quite difficult problem
of boundary conditions in the CE, as shown in the approach to entropy pioneered by Nettleton
and Green [21]. As we will translate the entropy derivation given in [15, 16] and later extended
in [17] we will try to write a compressed and self-consistent account of their derivations; their
equations will be referred to by preceding them with I, II or III, respectively. In the lattice gas
case there is no kinetic energy integration and equation (I-16) for the entropy becomes

S

k
= β〈(U − � − µ · N)〉. (55)

The angular brackets indicate a grand canonical average, µ · N = ∑
α µα Nα and � is

the grand thermodynamic potential. Our goal is to write the entropy as an expansion in
correlation functions and, in order to do that, we use as a starting point the moment–cumulant
expansion [15]. Given a random variable X we write

X (ξ) =
∑
R�1

∑
αR

ξR

R!
µαR (56)

ln[1 + X (ξ)] =
∑
R�1

∑
αR

ξR

R!
καR (57)
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for its moment (µαR ) and cumulant (καR ) expansion, which are linked by

µαR =
R∑

k=1

{k{ri}R}
k∏

i=1

κri (58)

καR =
R∑

k=1

{k{ri}R}(−1)k−1(k − 1)!
k∏

i=1

µri . (59)

For distribution functions the expansion is

n(M)
αM

({M}) =
M∑

k=1

{k{mi}M }
k∏

i=1

C (mi )
αmi

({mi }) (60)

C (M)
αM

({M}) = h(M)
αM

M∏
i=1

n(1)
αi

(i) =
M∑

k=1

{k{mi}M }(−1)k−1(k − 1)!
k∏

i=1

n(mi )
αmi

({mi }). (61)

Here we have worked with the partitions of the set {M} in k disjoint subsets {mi}M , 1 � i � k,
which is symbolized by {k{mi}M }, where {mi }M indicates the i th subset {mi} of {M} and,
therefore,

∑M
k=1{k{mi}M } represents the sum over all the partitions in k subsets and, for each

k, is 1 � i � k. This partition involves both the composition and coordinate sets and the empty
sites are counted in both sets. Notice that equation (61) is the one that forces h(M) to behave in
a proper irreducible M-body way (see, e.g., [25]). On the other hand, equations (60) and (61)
have the same formal structure as the expansion of the nth derivative of the exponential of a
function and of the logarithm of a function, respectively [15], i.e.

∂M e f (x)

∂xM
= e f (x)

M∑
k=1

{k{mi}M }
k∏

i=1

∂mi f (x)

∂xmi
(62)

∂M ln f (x)

∂xM
=

M∑
k=1

{k{mi}M }(−1)k−1(k − 1)!
k∏

i=1

1

f (x)

∂mi f (x)

∂xmi
(63)

and so we are led to look for a suitable way of writing exp[−β(UαM ({M}) − � − M · µ)]
in order to use the expansions given in equations (60)–(63). Therefore, we define the operator
(R) and the dimensionless function F (M)

αM
({M}) (equations (I-17) and (I-18)) by

(R) = zR ∂R

∂zR
(64)

F (M)
αM

({M}) = exp(−β�)
n(M)

αM
({M})
zM

. (65)

In general, the M-body distribution function can be written in terms of the probability of
finding M molecules in the configuration {M}:

n(M)
αM

({M}) =
∑
N�0

∑
{αN }

∑
{N}

1

N !
PαN+M ({N + M}). (66)

Here, and in the following equations, we will need to distinguish between the different
subindexes implied in

∑
N (as in equations (2) and (3)). The separation is between

∑
N�0

(sum over the order of the sets),
∑

{αN } (the compositions) and
∑

{N} (the coordinates). As we
also have

PαN ({N }) = zN e−β[UN ({N})−�] =
∑
R�0

∑
{αR }

∑
{R}

(−1)R

R
n(N+R)

αN+R
({N + R}) (67)
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we can write

F (M)
αM

({M}) =
∑
N�0

∑
{αN }

∑
{N}

zN

N !
e−βUαN+M ({N+M}). (68)

Now it is immediate to obtain

1

F (M)
αM ({M})

∑
R�0

∑
{αR }

(−1)R

R!
(R) F (M)

αM
({M})

= exp −β(UαM ({M}) − � − M · µ)

n(M)
αM ({M}) = A(M)

αM
({M}) (69)

and, therefore, we have that

S

k
= −〈ln n(M)

αM
({M})〉 − 〈ln A(M)

αM
({M})〉. (70)

If in equation (69) we use equation (62) with the substitution of f (x) by ln F (M)
αM

({M}),
the result is

A(M)
αM

({M}) =
∑
R�0

∑
{αR }

(−1)R

R!

R∑
i=1

{k{ri}R}
k∏

i=1

(ri )[ln F (M)
αM

({M})]. (71)

Defining the random variable X of equation (57) by

ln[1 + X (ξ)] =
∑
R�1

∑
{αR }

(−1)RξR

R!
(R)[ln F (M)

αM
({M})] (72)

and using equations (58) and (59), we obtain that A(M)
αM

= 1 + X (1) and, therefore,

ln A(M)
αM

({M}) =
∑
R�1

∑
{αR}

(−1)R

R!
(R)[ln F (M)

αM
({M})]. (73)

It can also be noticed that, when calculating the average in the RHS of equation (73), the
importance of writing � as in equation (2) becomes evident. The operator (R) (equation (64))
introduces a factor N !/(N − R)! and, should the N ! term in equation (2) be missing, we
would not have been able to obtain the equation equivalent to (I-29).

The average of (N)[ln F (M)
αM

] can be found through the use of equation (63) which implies
the decomposition

(R)[ln F (N)
αN

({N })] =
R∑

k=1

{k{ri}R}(−1)k−1(k − 1)!
k∏

i=1

zri

F (N)
αN

∂ri F (N)
αN

∂zri
. (74)

In this way, we have (sum over coordinate sets only)

zri

F (N)
αN ({N })

∂ri

∂zri
F (N)

αN
({N }) =

∑
{ri }

nαN+ri
(N+ri )({N+ri })

n(N)
αN ({N }) (75)

and the second term of equation (73) becomes

〈(R)[ln F (N)
αN

({N })]〉 =
∑

N,M�0

∑
{αN }
{αM }

(−1)M

N !M !

∑
{N+M+R}

n(N+M)
αN+M

({N + M})
R∑

k=1

{k{ri}R}

× (−1)k−1(k − 1)!
k∏

i=1

n(N+ri )
αN+ri

({N + ri })
n(N)

αN ({N }) . (76)
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Notice that in equation (76) the sum involves both the composition and coordinate sets (αN+M+R

and {N + M + R}, respectively) of (N + M + R)-bodies where the summand contains the
(N + M)-body distribution function times a sum over all the conditional probabilities of having
(N + ri ) in a given configuration when N of them are held fixed. Let us now tackle the first
term of equation (70). As we can generally write that

n(M)
αM

({M}) = exp[W (M)
αM

({M})] = exp

[ ∑
m⊆M

ω(m)
αm

({m})
]

(77)

the potential of average force W (M)
M thus defined can be decomposed into its irreducible m-

body components and generalized superposition approximations (SAs) of order k are obtained
if ω(m) ≡ 0, m > k [22]. Here, we also partition both composition and coordinates sets. In
this way we find that the irreducible components are given by

ω(m)
αm

({m}) = ln

[
n(m)

αm

∏
{m−2}⊆{m} n(m−2)

αm−2
. . .∏

{m−1}⊆{m} n(m−1)
αm−1

∏
{m−3}⊆{m} n(m−1)

αm−3 . . .

]
. (78)

Then, it is obtained that

〈ln n(M)
αM

({M})〉 =
∑

{m}⊆{M}
〈ω(m)

αm
〉 =

M∑
m=1

∑
{αm}

1

m!

∑
{m}

n(m)
αm

({m})ω(m)
αm

. (79)

This term already goes beyond the Guggenheim–McGlashan [20] entropy equation. Lastly,
the final exact result for the entropy is

S

k
= N −

∑
M�1

∑
{αM }

1

M !

∑
{M}

n(M)
αM

({M})ω(M)
αM

({M})

−
∑
R�1

∑
N,M�0

′ ∑
{αN+M+R }

(−1)M+R

N !M !R!

∑
{N+M+R}

n(N+M)
αN+M

({N + M})

×
R∑

k=1

{k{ri}R}(−1)k−1(k − 1)!
k∏

i=1

n(N+ri )
αN+ri

({N + ri })
n(N)

αN ({N }) (80)

and shows the entropy decomposed in a term with the traditional contribution of terms of the
form nα ln nα plus a sum of increasingly complex contributions. The prime in the summation
means that the term R = 1, N = M = 0 has been separated (it gives N) and must be omitted
from the sum.

4.2. The ring approximation

Explicitly, the first terms of the entropy equation (80) are

S

k
= N −

∑
α

∑
i

n(1)
α (i) ln n(1)

α (i) −
∑
α,λ

1

2!

∑
i,j

n(2)
αλ (i, j) ln

n(2)
αλ (i, j)

n(1)
α (i)n(1)

λ (j)

− · · · +
∑
α,λ

1

2!

∑
i,j

n(1)
α (i)n(1)

λ (j)h(2)
αλ (i, j) + · · · (81)

and more of them are given in [15] (equations (37) and the following). It is important to keep
in mind that, for example, 2! is either 1 (α �= λ) or 2 (α = λ).
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In equation (80) the beginnings of a separation of the entropy into different formal
contributions can be found. We have:

(i) the ‘ideal’ contribution N (see also equation (47));
(ii) the ever present logarithmic contribution

∑
n(m)ω(m); and

(iii) everything else, which is the complex summation following the logarithmic term.

We shall presently discuss this last contribution and will show how to calculate to infinite order
four subsets of terms. The first subset leads to the so-called ring approximation (RA) and is
dealt with in this subsection: the other three subsets stem from susceptibility related terms and
are discussed in the next subsection.

The distribution functions can be factored out by using the SA (see equation (78)). Here
we discuss the results obtained with the second-order SA while how to deal with the third-order
SA is discussed, for fluids, in [26]. Explicitly, with the second-order SA we write an M-body
distribution function as

n(M)
αM

({M}) =
[ M∏

i=1

n(1)
αi

(i)

] ∏
{i1,i2}⊆{M}

[1 + h(2)
αi1 ,αi2

(i1, i2)]. (82)

In [16] it is shown that the leading terms arising from applying the SA to the last summation
in equation (80) have, with the exception of the first one, the topology of rings. Specifically,
the leading terms, in diagrammatic form, are

S(�)

k
=

The standard conventions adopted are [24]: (1) a black n(1)-circle (unlabelled) is associated
with the function n(1)

αi
(i) and a summation over species αi and coordinates i is implied; (2) a

full line joining two black n(1)-circles represents an h(2)
α1α2

(1, 2) bond; (3) the value of a diagram
is I/σ , where I is the value of the sum calculated with some arbitrary labelling of the black
circles and σ is the symmetry number of the diagram (the number of permutations of black
circles that do not change the topology of the diagram). For the specific case of n-order ring
terms, σ = 2n [16]. In particular, the association of the first terms of our diagrammatic
expansion is

=
∑
α1,α2

1

2!

∑
i1,i2

n(1)
αi1

(i1)n
(1)
αi2

(i2)h
(2)
α1α2

(i1, i2).

This one does not have the ring topology and is the last term of equation (81). The first ring
term is

= 1
6

∑
α1,α2,α3

∑
i1,i2,i3

( 3∏
k=1

n(1)
αk

(i)

)
h(2)

α1α2
(i1, i2)h

(2)
α1α3

(i1, i3)h
(2)
α2α3

(i2, i3).

The simplest neglected term (always within the second-order SA) is

.

The sum of ring terms gives the RA which can be diagrammatically summed to infinite
order [16]. As the resummation was based on the topology of diagrams, the result can be
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immediately transcribed to lattice gases and here we present, in our notation, the result given
in [16] (equations (II-11)–(II-13)), with a couple of misprints corrected:

S

k
= N −

∑
M�1

∑
{αM }

1

M !

∑
{M}

n(M)
αM

({M})ω(M)
αM

({M}) +
∑
{α2}

1

2

∑
{2}

n(1)
α1

(1)n(1)
α2

(2)h(2)
α2

(1, 2)

+
1

2

∑
q�3

(−1)q−1

q

∑
{αq}

∑
{q}

( q∏
k=1

n(1)
αk

(k)

)

× h(2)
α1α2

(1, 2)h(2)
α2α3

(2, 3) · · ·h(2)
αq−1αq

(q − 1, 1)h(2)
αqα1

(q, 1) + · · · . (83)

This expression, in the case of an homogeneous system, can be analytically summed
(equation (II-40)). It can also be mentioned that in equations (II-40) and (II-41) a minus
sign is missing.

4.3. Susceptibilities-related contributions and the renormalized ring approximation

In [17] we discussed the contribution to entropy that arises from density fluctuations. The last
term of equation (81) (the one not included in the RA) is, in fact, the first term of a series that
we shall now discuss. The series, as taken from equation (80) with the distribution functions
written in terms of generalized SA, taking out the ring terms of the RA and neglecting an
infinite number of terms that do not fit in the pattern, is

S(c)

k
=

∑
p�2

∑
{αp}

1

p!

∑
{p}

[n(p)

{αp}({p}) − 
(p)

{αp}({p})] (84)


(p)

{αp}({p}) =
∏

{p−1}⊆{p} n(p−1)

{αp−1}
∏

{p−3}⊆{p} n(p−3)

{αp−3} · · ·∏
{p−2}⊆{p} n(p−2)

{αp−2}
∏

{p−4}⊆{p} n(p−4)

{αp−4} · · · . (85)

The second term of the series (p = 3) can be transformed to

S(c)
3

k
=

∑
{α3}

1

3!

∑
{3}

( 3∏
i=1

n(1)
{αi }({i})

)
[h(3)

α3
({3}) −

3∑
i=1

∏
k �=i

h(2)
αi αk

({i,k})

− h(2)
α1α2

({1, 2})h(2)
α1α3

({1, 3})h(2)
α2α3

({2, 3})] (86)

and clearly identifies the three subsets of terms we are going to sum. Let us mention that, in [17],
the derivation of the compressibility related terms was for a one-component, homogeneous
system; here we will generalize it. This is necessary because in lattice gases we inevitably
have a mixture of at least two components and, if adsorption phenomena are mapped onto
a lattice gas, there are usually external fields (e.g. adsorption of one species is preferred at
the expense of some other species and is usually triggered by external fields). Therefore, we
consider a general mixture under the influence of species-dependent external fields. There are
three different subsets of terms that will be summed to infinite order. Lastly, let us mention that
in [17] we also proved that, in the thermodynamic limit, the compressibility related contribution
is a functional of only the one-body distribution function and, therefore, does not contribute
to equations derived through variational principles; it only contributes to the system’s size
constraint. That means that it does not contribute to variational formulations although it does
to numerical evaluations of the entropy.

(a) The first subset of terms to be summed is

Sa

k
=

∞∑
s=2

∑
{αs }

1

s!

∑
{s}

( s∏
i=1

n(1)
αi

(i)

)
h(s)

αs
({s}) =

∞∑
s=2

〈C (s)〉
s!

(87)
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and also serves as the definition of 〈C (s)〉, its first term is the fourth one of equation (81) and
its analogue is equation (III-18).

On the other hand, the moment–cumulation relation (equation (61)) allows us to relate
〈C (s)〉 to 〈n(p)〉. The normalization of the distribution functions (see, e.g., equations (5)
and (12)) is

〈n(m)
αm

({m})〉 = 〈Nα1 (Nα2 − δα2α1) . . . (Nαm − δαmα1 − · · · − δαmαm−1)〉 (88)

and can be cast in the form similar to equation (III-20):

〈n(m)
αm

({m})〉 =
∑

αt ∈{αm }|�=

nα1∑
k1=1

· · ·
nαt∑

kt =1

〈 t∏
i=1

Nki
αi

〉 t∏
i=1

s(nαi , ki) (89)

where the notation means that there are t different species in the composition set αm , each one
of them appearing nαi , i = 1, . . . , t times, that the products are over the t different components
in the m-components set αm , Nαi is the number of molecules of type αi , the angular brackets
is a grand canonical average and s(r, k) are Stirling numbers of the first kind [23].

Now we define the n-body susceptibilities by

γ (n)
α =




〈(Nα − 〈Nα〉)n〉
N

α = (α, n. . . , α)

〈∏αi ∈{αm }|�=(Nα − 〈Nαi 〉)ri 〉
N

α = (α1,
r1. . . , α1, . . . , αt ,

rt. . . , αt ).
(90)

It is obvious that the number of n-body susceptibilities depends on the number of available
species p and, by definition, γ (1) ≡ 1. Now, using equations (89) and (90), it is possible to
write equation (87) in terms of the n-body susceptibilities given in (90), all in the same vein as
equations (III-22)–(III-24). The general expression is quite cumbersome and, as we are going
to sum exclusively the contribution of the diagonal susceptibilities (one species, k-body) to all
orders and the non-diagonal k-body two-species susceptibilities (also to all k-body orders), we
will just write the needed equations. The diagonal r -body susceptibility contribution summed
to infinite order is

(r)
α = Nγ (r)

α

∞∑
k=r

s(k, r)

k!
. (91)

Using the result [23]
∞∑

k=r

s(k, r)

k!
xk = [ln(1 + x)]r

r !
(92)

we obtain the total contribution of the diagonal r -body susceptibility to the entropy as

(r)
α = Nγ (r)

α




(ln 2 − 1) r = 1
(ln 2)r

r !
r > 1

(93)

which is the (partial) generalization of equation (III-26). Now we consider the contribution
of the simplest non-diagonal susceptibility, i.e. the two-body two-species one, let us say γ

(2)
αλ .

For the r th-order term given by the expansion of equation (87) we have r − 1 terms with α

and λ appearing nα and r − nα times, respectively; nα = 1, . . . , r − 1 and all these terms with
statistical weight equal to 1. Then the r th contribution of each αλ pair to the entropy is

Nγ
(2)
αλ

r−1∑
nα=1

s(nα, 1)

nα!

s(r − nα, 1)

(r − nα)!
. (94)
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Using the recurrence [23](
m

s

)
s(r, m) =

r−s∑
k=m−s

r !
s(r − k, s)

(r − k)!

s(k, m − s)

k!
(95)

the contribution given in equation (94) reduces, with s = m − s = 1, k = rα , to

2Nγ
(2)
αλ

s(r, 2)

r !
.

Lastly, we use the sum given in equation (92) to obtain that the contribution to the entropy
arising from γ

(2)
αλ after summing over all the n-body contributions is


(2)
αλ = Nγ

(2)
αλ (ln 2)2. (96)

The process can be repeated for the evaluation of the contribution of the k-body two-
species susceptibilities γ

(k)

α r...αλk−r... λ
and the general result, for the case of α appearing r times and

λ k − r times is


(k)

α r...αλk−r... λ
= Nγ

(k)

α r...αλk−r... λ

(ln 2)k

r !(k − r)!
. (97)

Equations (93), (96) and (97) give the whole two-species contribution to equation (87).
It is clear that this summation was possible because of (95) and that the evaluation of higher-
order contributions depends on finding more and more complicated recurrences in the Stirling
numbers. As three-body susceptibilities are notoriously hard to calculate and rarely used, we
stop the resummation of the series given in equation (87). The density fluctuations contribution
to the entropy evaluated up to now is

Sa

k
= N

∑
α

[
ln 2 − 1 +

∞∑
n=2

(ln 2)n

n!
γ (n)

α

]
+ N

∞∑
n=2

n−1∑
r=1

(ln 2)n

r !(n − r)!

p−1∑
i=0

p∑
j=i+1

γ
(n)

αi
r...αi α j

n−r... α j
. (98)

The relationship between the susceptibilities and the correlation functions is easily
obtained from equations (88)–(90). In particular, for the most important of all, we have

γ
(2)
αλ = 1

N

∑
1

n(1)
α (1)

[
δαλ +

∑
2

n(1)
λ (2)h(2)

αλ (1, 2)

]
= 1

N

∑
1

n(1)
α (1)γ̃

(2)
αλ (1) (99)

which defines a local compressibility γ̃
(2)
αλ (1).

(b) The second term in equation (86) is the first one in a series of so-called (in diagrammatic
terminology) ‘star’ products given in equation (27):

Sb

k
= −

∑
n�3

�n

�n =
∑
αn

1

n!

∑
{n}

(n)∑
i=1

n(1)
αi

(i)
∏
k �=i

[n(1)
αk

(k)h(2)
αi αk

({i,k})]
(100)

which shows that all the terms have a common vertex. Diagrammatically, they can be written
as

�n =
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where the diagrammatic conventions are those already mentioned. Notice that the diagram
describing �n has n black circles and n − 1 bonds. All these diagrams can be analytically
summed. Let us first define a (p + 1) × (p + 1) matrix Gαi α j by

Gαi α j (i) =
∑

j

n(1)
α j

(j)h(2)
αi α j

(i, j) = γ̃ (2)
αi α j

(i) − δαi α j .

Diagrammatically, the matrix elements are

Gαi α j (i) =
with the proviso that in the decorated black circle the sum over species is not performed
(only the one over the lattice) and the white circle is a white-1 circle labelled αi , i, i.e. there
is no factor or sum attached to it. Now we apply the star product lemma of diagrammatic
expansions [24] which says that, if {G} is a set of star-irreducible diagrams and {H } is the set
of all the diagrams in {G} plus all its possible star products, then

H =
∑

Hi ⊆{H }
Hi = exp

( ∑
Gi ⊆{G}

Gi

)
− 1.

Let us apply this lemma to each row of the matrix Gαi α j . We take the i th row as the set {G} to
which the lemma is applied. Then

Hαi (i) = exp

(∑
α j

Gαi α j (i)

)
− 1.

If from eachHαi (i) we subtract the sum of the diagrams in {G} (in equation (100) the sum starts
with n = 3 vertices), multiply by n(1)

αi
(i), sum over the lattice and then sum over the species αi

we get the ‘star’ product fluctuation density contribution to the entropy of equation (100) as

Sb

k
= −

p∑
i=0

∑
i

n(1)
αi

(i)

{
exp

(∑
α j

Gαi α j (i)

)
− 1 −

∑
α j

Gαi α j (i)

}

= −
p∑

i=0

∑
i

n(1)
αi

(i)

{
exp

(∑
α j

γ̃ (2)
αi α j

(i) − 1

)
−

∑
α j

γ̃ (2)
αi α j

(i)

}
. (101)

Notice that, as we have one vertex common to all h-bonds and we are also summing over
that vertex, the sum over all the pairs i, j (

∑
i, j ) does not imply any overcounting. Also,

equation (101) is the generalization to inhomogeneous mixtures of equation (III-28) and,
thanks to the biunivocity between lattice gases and liquids established in section 2, can be
immediately translated to liquid language as

Sliq
b

k
= −

p∑
i=0

∫
dxn(1)

αi
(x)

{
exp

(∑
α j

γ̃ (2)
αi α j

(x) − 1

)
−

∑
α j

γ̃ (2)
αi α j

(x)

}
. (102)

(c) The last series of terms in equation (86) is the first one of a sum of rings, all of them
with the same sign. It is equation (III-29) and therefore we have

Sc

k
= −1

2

∑
s�3

1

s

∑
{αs }

∑
{s}

( s∏
i=1

n(1)
αi

(i)

)
h(2)

α1α2
(1, 2)h(2)

α2α3
(2, 3) . . . h(2)

αsα1
(s, 1). (103)

When added to the ring approximation term giving a ring sum over all the even-order rings, it
is the renormalized ring approximation (RRA) shown in equation (III-31). The result, in our
notation, is

S(R R A)

k
= −1

2

∑
s�2

1

s

∑
{α2s}

∑
{2s}

( 2s∏
i=1

n(1)
αi

(i)

)
h(2)

α1α2
(1, 2)h(2)

α2α3
(2, 3) . . . h(2)

α2sα1
(2s, 1). (104)
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This term can be analytically summed on homogeneous systems (if such a system exists in
lattice gases) obtaining the result (equation (III-32))

S(R R A)

k
= 1

2

∑
{�̃k }

{ln[|1 − (H̃(k))2|] + Tr[(H̃(k))2]} (105)

where the matrix elements of H̃ are H̃αλ(k) = (ραρλ)
1/2h̃αλ(k), h̃αλ(k) is the Fourier transform

of the pair correlation function, the argument of the logarithm is the determinant of the matrix
1 − (H̃(k))2, the other term is the trace of the corresponding matrix and {�̃k} is the reciprocal
space lattice. The more interesting case (for adsorption problems) of inhomogeneous systems
needs a careful analysis; it is, probably, a stumbling block to a direct application of the entropy
equation presented in this paper. However, we believe that much can be done, because if the
renormalized ring term is approximated by some homogeneous system, this approximation
should not be used in any variational principle, only in approximating the numerical value of
the entropy (see the discussion in [17]) and the inaccuracies involved do not seem much worse
than those due to truncation in the expansion. In other words, any average performed via the
distribution functions is not affected by inaccuracies in the ring approximation. Finally, for the
sake of completeness, let us collect together the different terms and write the entropy equation
(equations (83), (98), (101) and (104))

S

k
= N −

∑
M�1

∑
{αM }

1

M !

∑
{M}

n(M)
αM

({M})ω(M)
αM

({M}) + N
∑

α

[
ln 2 − 1 +

∞∑
n=2

(ln 2)n

n!
γ (n)

α

]

+ N
∞∑

n=2

n−1∑
r=1

(ln 2)n

r !(n − r)!

p−1∑
i=0

p∑
j=i+1

γ
(n)

αi
r...αi α j

n−r... α j

−
p∑

i=0

∑
i

n(1)
αi

(i)

{
exp

(∑
α j

γ̃ (2)
αi α j

(i) − 1

)
−

∑
α j

γ̃ (2)
αi α j

(i)

}

− 1

2

∑
s�2

1

s

∑
{α2s }

∑
{2s}

( 2s∏
i=1

n(1)
αi

(i)

)
h(2)

α1α2
(1, 2)h(2)

α2α3
(2, 3) . . . h(2)

α2sα1
(2s, 1). (106)

5. Conclusions

In adsorption related phenomena the would-be adsorbed molecules can be (very usefully)
analysed through DF techniques while the adsorbed molecules in the crystalline lattice are
usually reduced to and discussed in terms of a system of spins in a lattice with some or several
spin averages as the quantities to be determined. As we believe that a unified treatment can lead
to new avenues of research and also that probability distribution functions are more fundamental
quantities than spin averages, we undertook a treatment of lattice gases in a full DF formalism.
In that respect it is inevitable to have, first of all, a full OZ formalism, i.e. a set of equations
that link the direct and total correlation functions hierarchies if the HKSM theorem holds
true. Through the use of a functional differentiation approach we first obtained the lattice gas
distribution and correlation functions hierarchies (analogous to those well known in the theory
of inhomogeneous fluids) and found that it was still insufficient to formulate an OZ theory.
The cause can be traced back to the fixed topology of lattice gases which implies a constraint
of similar nature to the one found for fluids in the CE. Therefore, we proceeded along the lines
previously developed in [2] and found that the same procedure that gets rid of the asymptotic
behaviour in fluids also gets rid of the topological constraint in lattice gases. In this way, we
were able to generate N-modified correlation functions, develop a full OZ formalism and prove
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that the HKSM theorem is also valid in the lattice gas case. The other fundamental ingredient
is an expression for the entropy as a functional of the already discussed correlation functions.
This was obtained by retracing the steps we previously followed [15–17] for the entropy of
fluids and we have written not only a general, exact (and, as such, intractable) expression for
the entropy (equation (80)) but also an approximated and potentially useful expression for it
(equation (106)). In that respect, we generalized the compressibility contribution to entropy
derived in [17] and showed that this generalization is also applicable to fluids. This result
is an example of what for us is the main conclusion of this paper: that, when analysed with
the full DF formalism, both fluids and lattice gases show a truly deep relationship and that
this isomorphism should open the DF point of view to lattice gases as well as lead to new
perspectives. Lastly, a word of caution about the use of these equations. They are the result
of summing infinite subsets of terms and their convergence properties are unknown. In fact, it
may well happen, as is the case for hard sphere fluids, where the PY approximation performs
better than the HNC, that some systems perform better with a less complete summation scheme.
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